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INTEGRAL SDLUTIONS OF THE WAVE EQUATION AND THE DIFFRACTION 

OF AN ARBITRARY ACOUSTIC WAVE BY A WEDGE" 

P.V. TRET'YAKOV 

A new solution of the wave equation is obtained: the integral of a 
product of two functions, the first of which is an arbitrary solution of 
the equation and the second of which is the derivative of an arbitrary 
solution of Laplace's equation with respect to the integration 
parameter. A solution to the problem of an arbitrary wave diffracted by 
a wedge is determined using the arbitrary wave diffracted by a wedge is 
determined using the integral of the potential of the wave and the 
solution of the same problem for a plane unit wave which satisfies 
Laplace's equation. When the diffraction of waves is considered in the 
case of spherical symmetry, the resulting integral may be reduced to a 
known form /l/. 

In the case of waves propagating in an angle of half-aperture 
ni(2n t 1) and diffracted by a half-plane, the solutions can be 
expressed in terms of elementary functions. 

Since the construction employed here does not differ in its 
essentials from that described in /l/, the details are omitted. 

1. We consider diffraction by a Riemann surface of an arbitrary acoustic wave with 
potential (or excess pressure beyond the front) 

f(t, r, z, coz 8)H (n (t, r, 2) - cos 0) (1.1) 

which is a generalized solution of the wave equation 

Here r, 8, z are cylindrical coordinates and H(S) is Heaviside's function. We shall 
henceforth refer to a wave with potential (1.1) as a wave of type (1.1). The Heaviside factor 
in (1.1) indicates that the wave front may be expressed as follows: 

n (t, r, z) - cos 8 = 0 (1.3) 

where, since the incident wave front is tangent to the diffracted wave front at e = o,zn, 
i.e., cos8 = 1, the latter may be expressed as q = 1. 

We seek a solution with periodicity T = 4n - 48 in 8, which implies that there is an 
incident wave whenever (4n - 4p)kg B < 2n + (4n -4fl)k but no incident wave when 2s 3_ (4n - 
4p)k (8 ((4~ - 4p)(k .-I), where k = 0; &I; t2; . . . 
with 7' -= 3n ). 

(shown in the figure for a plane unit wave 
The easiest case to understand is T =_ 4n, 8 = 0 (corresponding to a half- 

plane), when the incident wave impinges on the Riemann'surface through a sheet (at (mk< eg 
2n + 4nk, k = 0; &I; -1-2: . . .f. 

The presence of a wave at specific values of 8 may be determined by multiplying the 
potential of the incident wave by 3I {sin'/, ?&I sin j/z h (2x - 8)}, where h = 2n/(4n -4p). 

We expand the potential of the incident wave (1.1) in Fourier series with respect to 8, 
assuming the above periodicity outside the region of diffraction, subsequently moving into 
the diffraction region. Throughout, the limits of integration in the integral representation 
of the Fourier coefficients are taken to be eigenfunctions that have no singularities at the 
edge of the wedge. We then interchange the order of integration and summation (it is not 
hard to show that this is legitimate). Summing the series obtained under the integral sign, 
we obtain the solution within the diffraction region: 
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@ (t7 r, 2,6) = f(t,r,z,cosU)H(sin 1/218 sin'/, h(2s-..U)).- 

G{ f&r, z,Ve('tl'h + u-l'~))(g~~,e) i g(Lt, 2n-- e))du 
fh 

5=ti-i/- , R (24 e) = sin he/($ - 218 e~~ xe + aa) 

(1.4) 

At h = 'is, T= 4s (diffraction by a half-plane) this formula may be rewritten in the 
form 

QO ,r,z,e) = f(t,r,z,cose)H(sin*/,e)- (1.51 

2. The same result may be obtained by a different argument. Let us seek a solution of 
the wave Eq.tl.2) in the form 

where the first function 
is a function whose form 

@ 0, r, 2, e) = SI (t. I‘, X, tl)9 fn, e)dn 

in the integrand is a wave of type (1.1) with front (1.3) and ip(ri, e) 
is yet to be determined. 

Since the surface n = cake is a wave front (i.e., a characteristic of Eq.fl.2)), the 
function f(t,r,z,cos@ may behave there in any of three different ways. In the first case 
the function is discontinuous across the front (and since f= 0 outside the front, the 
jump is f K r, z, 11)). In the second the derivative of the function with respect to the surface 
(1.3) experiences a discontinuity. Finally, higher-order derivatives of f 0, T, 2, cos e) may 
be discontinuous. 

Simple differentiation shows that 

Rere o(D is the wave operator (see (1.2)), Cf is the wave operator after substitution 
of u = co.? H, and therefore cVf == 0. In addition, Tr,, (f (t, r, 2, 3)) = 0 is the equation 
governing the propagation of discontinuities of the solutions of Eq.11.2) /3/, which is 
satisfied in the first case by f (t, r, z. q). The function Pr, (f (t, r, z, 9)) is the transversal 
derivative with respect to the surface (1.3). However, this surface is a characteristic, and 
therefore the transversal direction is tangential /3/. The tanqential derivative cannot be 
discontinuous across a characteristic, but outside the front f= (i, and therefore Pr, (f (t7 
P, z, n)) = 0. Thus, for ECU to vanish we must put 

If we put 
transformation 

$ = l vdrl. int.rate Eq.(2.1) with respect to 9 and then apply the Chaplygin 
5 = n - VT- 4, the result is the Laplace equation 

Thus, for any solution 21, of the Laplace Eq.(2.2) and any solution of Eq.tl.2) of type 
(1.1) with front n = cos e , we can construct a new solution of the wave equation 

Q((t,r,z,e)= Sf(t,r,z,tl)~9(71_1/~e)drl 

Conversely, if @ is a solution of the wave equation and we are given an arbitrary wave 
of type (l.l), then II, (5, 0) satisfies Laplace's Eq.(2.2). 

Choosing Ip as a plane unit wave satisfying Laplace's equation and diffracted by a 
wedge, we obtain a new solution of the wave equation, and the form of the integrand in 12.3) 
is just (1.4). 

Using (1.51, it is easy to obtain all the solutions of the problem of waves diffracted 
by a Riemann surface with periodicity T = 4n, which were described in ,lZf in terms of 
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elementary functions. 
We will now consider diffraction by a Riemann surface with periodicity T=4n of a 

spherical wave 

f (t, r, 2, cos e) = (T - #H (7 - p)/p 

where r=R,+t is the time, measured from the formation of the wave, t = 0 is the time 
of arrival of the wave at the r = 0 axis along which the Riemann surface branches, R, =const 
is the distance from the centre of symmetry of the wave to the axis r = 0, p' = R,D + i-0 + 
2H,r cos 8, the integral for this function in (1.5) can be evaluated in terms of elementary 
functions and within the diffraction region one has 

are the binomial coefficients and (k/21 the integral part of the bracketed 

3. We will now consider an arbitrary incident wave of the form f (t I r, z, 8)H (q - cos e) 
with front q = co5 8. Repeating the reasoning of Sect.1, we obtain the solution of the 
problem of diffraction of the wave by a Riemann surface with periodicity T=4n-448, h= 
2nl(4n - 48): 

Q((t, r,z, 0) = I(t, r, z, 6)H (sin1/,hBsin1/,h(2n-_))- (3.1) 

+0t* r, 2, -i ln~ll~) + f(t. r, z,iln~~'~)][g(~,O)+ g(a, 2x--8)]&+ 

_slf(tl r, z, - iln ul'L)-f(t,r, z, i lnullA)][X(u,O)+ ~(u,2n - 9)]du 

iz = -1, x(u, 0) = (cos ItO - u)/(l - 2ucos hEI + uz) 

Here 6 and g(u,0) are defined as in (1.4). If T = 4n, h = vz , formula (3.1) becomes 

@(t, r. z7 0) = f(t. r, z, B)H (sinr/,O)--& 1 [f(-i ]nl/~+~)z) + 
--c 

(3.2) 

f (i In (VEX- u)“)] u?~~$~so + & S [f (- i In (u, - 1/~2 - I)*) - 

f(i ln(u, - v/w"--)2)] ,;~;~;~*, 

i* = -1, P = I/(q - 1)/2, Y = v(q + 1)/2 

We have omitted the first three arguments in the expression for f (t, r, z, u) in the integrand. 
If f(t,r,z, a) is an analytical function of its last argument, expressions (3.1), (3.2) 

will be real. Otherwise, only the real part of the expression on the right is retained. 

4. We will now consider the solution with periodicity 
are integers. 

T = 2nqip, li = p/q, where p and q 
Analysis shows that one can first find the solution -for 

subsequently constructing the solution for A =p/q as 
J. = 1/q. T = 2nq. 
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(4.1) 

As an illustration, consider the example h = 'VJ, T = 3n and a plane unit wave. In that 
case a wave exists for 0 Q 8 Q 2% 3n < 6 < 5n etc., but not for 2n<6<3n,5n<6<6n 
(see the figure). 

The problem may clearly be split into two with periodicity T = 6n (A. = */Q). In the 

first we assume that there is a wave when 6nk<6<2n +6nk, in the second the non-zero 

wave exists at 3n + 6nk Q 6 < 5n + 6nk but not at 5x+6nk<6<8x+Gnk.Here, again, 
k = 0. +I. +2; . . . . >_ (_..- 

Note that by taking Cl1 = 6 - 3n in the second problem, we are back in the situation of 

the first problem. It will therefore suffice to determine a solution flj, (6) for the first 

problem, and then 11/,(6 + 3n) will be a solution of the second. Since the wave Eq.tl.2) is 

linear and the sum of conditions of the first and second problems satisfies the conditions 
for T = 3n, h = =I,, it follows that 

fsi, (6) = fll, (6) t fll, (6) + 3n 

Similar arguments can be used for arbitrary integers p and q and any form of f(e). The 
same result is obtained if the functions g(u. 6) and x (U> 6) occurring in (1.4) and (3.1) 
are expanded in fractions corresponding to h = l/q. 

If h = '!?> T = 4n solutions of the diffraction problem have been determined for some 

waves in terms of elementary functions. Therefore, using (4.1), one can construct a solution 
for h = n +'I.,. T = 4xl(2n -:m 1) (corresnondins to the incidence of the wave in an angular 
region with'haif-apertuie ni(2n Y- 1)): - - 

fn+l/, (0) = gfx FM (4.2) 

Here and below, Ok =- 6 +- 4nk/(2n + 1). 
For example, for a cylindrical wave In(6 -I/6'- I), 

2R,r ~0s 6), R, = const is the distance from the wave axis 

2n 

where 62 (e) = (R, L t)Y(&* + r2 + 

to the r=O axis, we obtain 

This series may be continued for any solution of the diffraction problem for T = 4n 
which is known in terms of elementary functions. 

5. Using formulae (1.4), (1.5), one can investigate the diffraction of a wave f (C r, 2, 
Cm (a + 6))H (q - cos (a + 6)) by a wedge and a half-plane, respectively. When constructing 
the solution it should be remembered that the reflected wave also participates in the dif- 
fraction. 

If the boundary condition at the wedge surface is aQ/,lan = 0, where n is the normal to 
the surface, the reflected wave can be written in the form (1.1) with 0 replaced by 28 + CC- 
8. If Q=O the reflected wave will have the same form at the wedge surface, but with the 
opposite sign. 

To obtain the solution inside the diffraction region, we must replace 6 in formulae 
(1.4) and (1.5) (or in the particular relations (2.41, (4.1)-(4.3)) by a -+ 8 (for the 
incident wave), then replace 6 by 28 + a - 6 (for the reflected wave), and add the results 

in the case aQ/an = 0 or subtract the first from the second if Q = 0, i.e., within the 
diffraction region the result is 
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4, = m (a f 0)$, CD (2g f cc - 0) 
where m(8) is the corresponding solution for the Riemann surface. 

These constructions using formulae (3.1), (3.2) may be carried out to obtain the solution 
of the diffraction problem for a wave f (a r, z, cz -j- @H(I) - cos (o -+- 8)) by a wedge and a half- 
plane. 

The author is indebted to V.V. Tret'yakov for useful discussions. 
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WEAKLY LINEAR OSCILLATIONS OF THE RADIUS OF A 

VAPOUR BUBBLE IN AN ACOUSTIC FIELD* 

N.A. GUMEROV 

Non-linear heat-and-mass exchange effects between a vapour bubble and a 
surrounding liquid under periodic pressure oscillations generated by an 
acoustic field of length significantly greater than the radius of the 
bubble are investigated. Based on a closed system of equations for the 
spherically symmetric processes around an isolated bubble /I/, the 
method of multiple scales 12, 31 is used to derive asymptotic equations 
for the behaviour of the average bubble radius, accurate to the second 
order in the field amplitude. 

Linear and weakly linear oscillations of vapour bubbles in acoustic fields have been 
studied quite extensively, and the main results have been summarized in the literature /I, 4/. 
The most comprehensive investigation of the "smoothed heat transfer effect" for vapour bubbles, 
that is, the variation of the average bubble radius over a large number of periods due to the 
non-linearity of heat-and-mass exchange, may be found in /4/. This paper departs from previous 
publications on "smoothed heat transfer" in its systematic allowance for the non-equilibrium 
conditions of the phase transitions, which, over a certain parameter ranqe, exert a decisive 
effect on the dynamics of the average bubble radius; the non-uniform vapour temperature in 
the bubble is also taken into account. In addition, application of the method of multiple 
scales has justified certain assumptions previously adopted in applications of the averaging 
method to derive equations for the dynamics of the average bubble radius. 

1. Statement of the problem. WB shall study the behaviour of a spherical vapour bubble 
in an unbounded space occupied by an ideal incompressible liquid, with the pressure at infinity 
Pm varying periodically about an equilibrium value PL = Pa (T*)* T, = T, (T is thetempera- 
ture, the subscript s denotes the parameters on the saturation curve and the asterisk 
denotes the parameters of the unperturbed state): 


